Comparison of Computational-Model and Experimental-Example Trained Neural Networks for Processing Speckled Fringe Patterns

نویسندگان

  • A. J. Decker
  • E. B. Fite
چکیده

Tile responses of artificial neural networks to experimental and model generated inputs are compared for detection of damage in twisted fan blades using electronic holography. Tile training set inputs, for this work, are experimentally generated cllaracteristic pattenls of tile vibrating blades. Tile outputs are damage flag indicators or second derivatives of tile sensitivity vector projected displacement vectors from a finite element model. Artificial neural networks have been trained in tile past with computational model generated training sets. This approacll avoids tile difficult inverse calculations traditionally used to compare interference fringes with tile models. But tile high modeling standards are hard m acllieve, even with fan blade finite element models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A DSS-Based Dynamic Programming for Finding Optimal Markets Using Neural Networks and Pricing

One of the substantial challenges in marketing efforts is determining optimal markets, specifically in market segmentation. The problem is more controversial in electronic commerce and electronic marketing. Consumer behaviour is influenced by different factors and thus varies in different time periods. These dynamic impacts lead to the uncertain behaviour of consumers and therefore harden the t...

متن کامل

Prediction of methanol loss by hydrocarbon gas phase in hydrate inhibition unit by back propagation neural networks

Gas hydrate often occurs in natural gas pipelines and process equipment at high pressure and low temperature. Methanol as a hydrate inhibitor injects to the potential hydrate systems and then recovers from the gas phase and re-injects to the system. Since methanol loss imposes an extra cost on the gas processing plants, designing a process for its reduction is necessary. In this study, an accur...

متن کامل

A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...

متن کامل

Estimation of the mean grain size of mechanically induced Hydroxyapatite based bioceramics via artificial neural network

This study focuses on the estimation of the mean grain size of mechanically induced Hydroxyapatite (HA) through the artificial neural network (ANN) model. The mean grain size of HA and HA based nanocomposites at different milling parameters were obtained from previous studies. The data were trained and tested by the neural network modeling. Accordingly, all data (55 sets) were based on the mecha...

متن کامل

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998